Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pathol Inform ; 12: 45, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34881099

RESUMO

PURPOSE: Validating artificial intelligence algorithms for clinical use in medical images is a challenging endeavor due to a lack of standard reference data (ground truth). This topic typically occupies a small portion of the discussion in research papers since most of the efforts are focused on developing novel algorithms. In this work, we present a collaboration to create a validation dataset of pathologist annotations for algorithms that process whole slide images. We focus on data collection and evaluation of algorithm performance in the context of estimating the density of stromal tumor-infiltrating lymphocytes (sTILs) in breast cancer. METHODS: We digitized 64 glass slides of hematoxylin- and eosin-stained invasive ductal carcinoma core biopsies prepared at a single clinical site. A collaborating pathologist selected 10 regions of interest (ROIs) per slide for evaluation. We created training materials and workflows to crowdsource pathologist image annotations on two modes: an optical microscope and two digital platforms. The microscope platform allows the same ROIs to be evaluated in both modes. The workflows collect the ROI type, a decision on whether the ROI is appropriate for estimating the density of sTILs, and if appropriate, the sTIL density value for that ROI. RESULTS: In total, 19 pathologists made 1645 ROI evaluations during a data collection event and the following 2 weeks. The pilot study yielded an abundant number of cases with nominal sTIL infiltration. Furthermore, we found that the sTIL densities are correlated within a case, and there is notable pathologist variability. Consequently, we outline plans to improve our ROI and case sampling methods. We also outline statistical methods to account for ROI correlations within a case and pathologist variability when validating an algorithm. CONCLUSION: We have built workflows for efficient data collection and tested them in a pilot study. As we prepare for pivotal studies, we will investigate methods to use the dataset as an external validation tool for algorithms. We will also consider what it will take for the dataset to be fit for a regulatory purpose: study size, patient population, and pathologist training and qualifications. To this end, we will elicit feedback from the Food and Drug Administration via the Medical Device Development Tool program and from the broader digital pathology and AI community. Ultimately, we intend to share the dataset, statistical methods, and lessons learned.

2.
Adv Drug Deliv Rev ; 177: 113959, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34481035

RESUMO

Cancer is the leading cause of death worldwide. Unfortunately, efforts to understand this disease are confounded by the complex, heterogenous tumor microenvironment (TME). Better understanding of the TME could lead to novel diagnostic, prognostic, and therapeutic discoveries. One way to achieve this involves in vitro tumor models that recapitulate the in vivo TME composition and spatial arrangement. Here, we review the potential of harnessing in vitro tumor models and artificial intelligence to delineate the TME. This includes (i) identification of novel features, (ii) investigation of higher-order relationships, and (iii) analysis and interpretation of multiomics data in a (iv) holistic, objective, reproducible, and efficient manner, which surpasses previous methods of TME analysis. We also discuss limitations of this approach, namely inadequate datasets, indeterminate biological correlations, ethical concerns, and logistical constraints; finally, we speculate on future avenues of research that could overcome these limitations, ultimately translating to improved clinical outcomes.


Assuntos
Inteligência Artificial , Modelos Biológicos , Microambiente Tumoral , Animais , Técnicas de Cultura de Células , Humanos , Imuno-Histoquímica , Neoplasias/diagnóstico
3.
Public Underst Sci ; 26(5): 596-611, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27340172

RESUMO

Popular media influences ideas about science constructed by the public. To sway media productions, public policy organizations have increasingly promoted use of science consultants. This study contributes to understanding the connection from science consultants to popular media to public outcomes. A science-based television series was examined for intended messages of the creator and consulting scientist, and received messages among middle school and non-science university students. The results suggest the consulting scientist missed an opportunity to influence the portrayal of the cultural contexts of science and that middle school students may be reading these aspects uncritically-a deficiency educators could potentially address. In contrast, all groups discussed the science content and practices of the show, indicating that scientific facts were salient to both media makers and audiences. This suggests popular media may influence the public knowledge of science, supporting concerns of scientists about the accuracy of fictional television and film.


Assuntos
Percepção , Opinião Pública , Ciência , Televisão , Feminino , Humanos , Masculino , Instituições Acadêmicas , Estudantes , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...